The Nature of [CII] emission in Lensed Dusty Star-forming Galaxies from the SPT survey

Bitten Gullberg¹, Carlos De Breuck², Axel Weiß³, Joaquin Vieira⁴ + the SPT SMG collaboration

 1 ESO

 2 ESO

 3 MPIfR

⁴ University of Illinois

Abstract

ALMA spectroscopy (cycle 0 and 1) of point sources from the South Pole Telescope survey has uncovered a population of high-redshift (z = 2 - 5.7), strongly lensed dusty star-forming galaxies (DSFGs). This has resulted in an unbiased redshift distribution for DSFGs peaking for $z \sim 3.5$, i.e. higher than previously believed of $z \sim 2.5$, and doubled the number of sources at z > 4. In this talk I will present the latest result from our finestructure line survey of 20 DSFGs. Comparing [CII] velocity profiles (APEX and *Herschel*) with CO velocity profiles from ALMA reveals consistent velocity profiles, suggesting little differential lensing between these species. Combining the [CII] detections with low-*J* CO detections (ATCA), we find [CII]/CO(1–0) luminosity ratios of 5200±1800, and argue that this line ratio is best described by [CII] and CO emitting gas with higher [CII] than CO excitation temperature, high CO optical depth $\tau_{\rm CO(1-0)} \gg 1$, and low to moderate [CII] optical depth $\tau_{\rm [CII]} \lesssim 1$. The geometric structure of photodissociation regions (PDRs) allows for such conditions.