Dusty galaxies at z > 3 Hanae Inami¹, Mark Dickinson¹, Emanuele Daddi², Daizhong Liu², Maurilio Pannella², David Elbaz², Stephanie Juneau², Jeyhan Kartaltepe¹, Frazer Owen³, Ranga-Ram Chary⁴ - ¹ NOAO - ² CEA/Saclay - 3 NRAO - 4 IPAC ## Abstract The z>3 regime for dusty galaxies is still unexplored due to the limited sensitivity of infrared observations, and thus our knowledge of how infrared galaxies evolve beyond z>3 is still limited. With the combination of the deepest Spitzer and Herschel data taken with the GOODS- and CANDELS-Herschel programs, we have selected 3< z<5 infrared luminous galaxies based on their infrared colors, photometric redshifts, and radio priors to observe with Keck/MOSFIRE (K-band). In this redshift range, the emission lines ([OIII], H β , or [OII]) can be detected in K-band to not only confirm their redshifts but also investigate their gas properties. The target high-z infrared luminous galaxies are much more dusty and massive than typical UV-selected galaxies (Lyman break galaxies). The redshift confirmations and gas diagnostics with near-infrared spectroscopy facilitate estimates of the total SFR density at z>3 and metallicity measurements for comparison with that of UV-selected galaxies.