First direct implications for the dust extinction and star formation of typical Ly α emitters at $z\sim 2$ from their faint infrared luminosities

Haruka Kusakabe 1 , Kazuhiro Shimasaku 1,2 , Kimihiko Nakajima 3 , and Masami Ouchi 4,5

- ¹ Department of Astronomy, Graduate School of Science, The University of Tokyo
- ² Research Center for the Early Universe, The University of Tokyo
- ³ Observatoire de Genève, Universitè de Genève
- ⁴ Institute for Cosmic Ray Research, The University of Tokyo
- ⁵ Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo

Abstract

Measuring the IR luminosity of galaxies is crucial for reliably deriving their dust extinction and stellar population. By stacking publicly available deep Spitzer/MIPS 24 μ m (Magnelli+11) and Herschel PACS images (Lutz+11; Elbaz+11; Magnelli+13) for 213 $z \simeq 2.18 \text{ Ly}\alpha$ Emitters (LAEs) in the GOODS-South, we obtain a strong upper limit to the IR luminosity of typical high-redshift LAEs and constrain the extinction law for the first time. The obtained very low 3σ upper limit $L_{\rm TIR}^{3\sigma}=1.1\times 10^{10}L_{\odot}$ implies that LAEs have little contribution to the faint ($\geq 100~\mu Jy$) number counts of submm galaxies by ALMA (Hatsukade+13; Ono+14). This $L_{\text{TIR}}^{3\sigma}$ gives $IRX \equiv L_{\text{TIR}}/L_{\text{UV}} \leq 2.2$, or $A_{1600} \le 0.9$ mag, indicating that dust extinction is remarkably small. Indeed, the inferred escape fractions of Ly α , 16–37%, and of UV continuum, $\geq 44\%$, are both significantly higher than the cosmic averages at the same epoch (Hayes+11; Burgarella+13). We find that the SMC extinction law (Pettini+98) is consistent with the IRX and the UV slope $\beta = -1.4^{+0.2}_{-0.2}$ of our stacked LAE, while the Calzetti law predicts a 3.8 times higher IRX at this β . SED fitting using the Calzetti law (Meurer+99; Calzetti+00) also gives a ~ 10 times higher SFR than that calculated from the IR and UV luminosities, $SFR_{\rm tot,IR+UV}$ = 1.5–3.3 $M_{\odot} yr^{-1}$. Thus, the SMC law is preferred. With the stellar mass $6.3^{+0.8}_{-2.0} \times 10^8 M_{\odot}$, our LAEs lie on a lower-mass extrapolation of the star formation main sequence at $z\sim 2$ (Daddi+07; Rodighiero+11). It suggests that the majority of $z \sim 2$ LAEs are mildly forming stars with relatively old ages of ~ 200 Myr. Note that adopting the Calzetti law leads us to conclude that they are in the burst mode similar to brighter LAEs (Hagen+14; Vargas+14). Finally we will discuss the possibility of constraining the extinction law and star formation mode of luminous LAEs by ALMA. A preprint of this work is available at arXiv:1411.1615 [astro-ph.GA].