Revolutionising our understanding of distant Lyman- α emitters: calibrating Ly α and the evolution of the LF from $z \sim 9$ to $z \sim 2$ Jorryt Matthee¹

¹ Leiden Observatory

Abstract

I will present results from our recent largest narrow-band surveys in order to improve our understanding of the early Universe (z > 2) using the Ly α emission line. Using a matched H α -Ly α survey at z = 2.23, we calibrate the Ly α escape fraction for different subsets of galaxies. We find a Ly α escape fraction of 4 ± 3 % for all star-forming galaxies, but 30 % for Ly α selected galaxies. We use this knowledge to study in depth the evolution of the bright end of the Ly α luminosity function from z = 2 - 9, using our INT WFCAM data at z = 2 and z = 3, new, archival, and published Subaru Suprime-Cam data at z = 6.6 and our CFHT WIRCAM + VLT SINFONI study of z = 8.8 Ly α candidates. While our depth is similar to previous surveys, the probed area is increased by more than an order of magnitude, allowing the study of the brightest Ly α emitters and overcoming cosmic variance. Based on our z = 2.23 findings, we are able to apply a much more complete selection of Ly α emitters and comment on published results. I will finish by highlighting the implications of our results for the cosmic history of star formation and for the study of the epoch of reionization.