Hot-dust (690 K) Luminosity Density and its Evolution in the Last 7.5 Gyr

Joana Oliveira¹, Hugo Messias¹, Bahram Mobasher², José M. Afonso^{1,3}

¹ Instituto de Astrofísica e Ciências do Espao, Universidade de Lisboa, OAL, Tapada da Ajuda, PT1349-018 Lisboa, Portugal

² Department of Physics and Astronomy, University of California, 900 University Avenue, Riverside, CA 92521, USA

³ Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, PT1749-016 Lisbon, Portugal

Abstract

We study the contribution of hot-dust to the luminosity density of galaxies and its evolution with cosmic time. Using the *Spitzer*-IRAC data over an area of 1.8 deg^2 covered by the COSMOS field, we estimate the contribution from hot-dust at rest-frame $4.2 \,\mu\text{m}$ (from 0 < z < 0.2 up to 0.5 < z < 0.9). This wavelength corresponds to black-body temperature of ~ 690 K. The contribution due to stellar emission is estimated from the rest-frame $1.6 \,\mu\text{m}$ luminosity (assumed to result from stellar emission alone) and subtracted from the mid-infrared luminosity of galaxies to measure hot-dust emission. The results to be presented in this poster are the continuation of the work shown in Messias et al.(2013), and are part of an on-going master-thesis work. The current goals are the identification of possible biases affecting the 2013 work and the direct comparison of the hot-dust component with the cold one observed at longer wavelengths with *Herschel*.