Probing the Epoch of Re-ionisation with the Hubble Frontier Fields Clusters

Hakim Atek

J-P Kneib, J. Richard,

P. Natarajan, M. Jauzac,
E. Jullo, M. Limousin, B. Clement,
D. Schaerer, & the CATS team

Star-forming Galaxies and Cosmic Re-ionisation

Star-forming galaxies are thought to be the responsible of the ionising background Universe mostly (90%) ionised at z~6
The exact contribution and the underlying physics (C, f_{esc} ...) depends on the faint end slope of the luminosity function.

•Use cluster lenses as natural telescopes to probe deeper in the Universe:

The Hubble Frontier Fields Clusters

Robertson et al. (2013)

The Faintest Galaxy Population through "Gravitational Telescopes"

UV LF at z~2 down to Muv=-13 thanks to A1689 magnification No sign of turnover in the UV LF

The Hubble Frontier Fields

Combining the power of gravitational lensing with the unique HST observing capabilities

DDT time of 840 orbits to observe 6 lensing clusters and parallel fields in Cy21/22/23

- WFC3/IR and ACS/optical imaging
- Spitzer, ALMA, VLT, Spectroscopy, etc.
- Lensing maps publicly available

ACS: (70 orbits per position)			WFC3/IR: (70 orbits per position)			
Filter	Orbits	AB_mag	Filter	Orbits	AB_mag	
F435W	18	28.8	F105W	24	28.9	
F606W	10	28.8	F125W	12	28.6	
F814W	42	29.1	F140W	10	28.6	
			F160W	24	28.7	

Completed

Nearly Completed

First Results from Abell 2744

Observations

- HFF ACS & WFC3:
- A total of 140 orbits down to 29 AB mag.
- The UDF reaches a depth of 30 AB mag.

	ACS			WFC3			
Filter	F435W	F606W	F814W	F105W	F125W	F140VV	F160VV
Depth	28.8	29.4	29.4	28.6	28.6	29.I	28.3

Jean-Paul Kneib/Hakim Atek

Deep15- Sintra - Mar 2015

Modelling A2744

31.3

23.3 0

26.3

50.2

27.2

18.

9.2

46.2

0

22.3

30.1

49.2

24.3

22.1 0

19.1

Magnification map

17 14 21 28 35 42 49 56 63

18.3

North

27.

28.1

as

45.2

0

4842.3

31.2

32.1

44.

~150 multiple images[°] <1% precision in the modelling</pre>

Jean-Paul Kneib/Hakim Atek

10"

Deep15- Sintra - Mar 2015

Jauzac et al. 2014

The UV Luminosity Function at z>6

The Faint-end of the UV LF at z>6

- Results in general agreement with blank fields
- Reaching down to $M_{abs,UV}\sim$ -15.5 this is 0.01L* at z=7
- Faint-end slope alpha=-2.01. The steep faint-end slope holds to very faint magnitudes
- No sign of turnover in faint-end slope

re	f	This work	Bouwens et al. (2014)	Schenker et al. (2013)	lshigaki et al. (2014)
x		-2.01 (-0.28,+0.20)	-2.0 ±0.14	-1.87 ±0.18	-2.10 (-0.15,+0.3)

Lensing Model Uncertainties

impact of model uncertainties on the UV LF
 comparison between pre-HFF and HFF based model of A2744
 => complex interplay between magnification, survey area,
 completeness

Atek et al. (2014b,d) Jauzac et al. 2014c Richard et al. 2014a

Importance of validating the lens model further: improve modelling technique and lensing information (redshift)

Jean-Paul Kneib/Hakim Atek

Deep15- Sintra - Mar 2015

Need For Spectroscopy (improving model)

Need For Spectroscopy (hi-z confirmation)

z~6 dropout with µ~30

Need For Spectroscopy

VLT KMOS IN PROGRESS SPECTROSCOPY OF A2744, A1689, AS1063

Richard et al., Atek et al. in prep

- Redshift confirmation of High-z
 dropout galaxies at z>6
- Emission line measurements of multiple-image systems at z=1-3
- Spatially-resolved studies of star formation in lensed galaxies

The Faint-end of the UV LF at z>6

- cosmic variance increases in lensed fields
 but lensing probes fainter galaxies
 at z~7, small CV difference between
 UDF and A2744
- z~7 UV LF projection for 6 Frontier Fields
- down to 0.05 precision on faint-end slope
- 30% uncertainty on the UV luminosity density

UV Luminosity density and Reionization

The Faint-end of the UV LF at z>8

Work in progress - using the first 4 HFF clusters ...

Summary

- Gravitational lensing helps reach the faint galaxies likely responsible for cosmic re-ionisation
- Galaxy UV LF down to Muv =-15.5 at z=7. This is about 2 mag deeper than the deepest observations in blank fields
- The faint-end slope remains steep (alpha =-2.01) down to very faint luminosities of 0.01L*
- Need for a better understanding of systematic uncertainties, cosmic variance, and the differences between lensing models (more spectroscopy needed)
- The full HFF sample of 6 clusters will reduce uncertainties on the integrated UV luminosity density, important to determine whether galaxies can effectively re-ionise the Universe