The AGN-galaxy connection
out to the highest redshifts




Outline

e AGN in the contemporary Universe
- Two fundamental modes of AGN activity
- The properties of AGN host galaxies

e ‘Radiative-mode’ AGN
- The star-formation vs AGN connection
- The origin of fuelling gas
- Evidence for ‘quasar feedback’
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Black hole mass relations

e Black hole mass scales tightly with both the luminosity (or
mass) of the galaxy bulge, and with the velocity dispersion

e Implies causal connection between galaxy & black hole growth
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“AGN feedback” 1n galaxy models

As well as the bulge mass vs black
hole mass relation, “AGN feedback”
1s currently postulated to explain
many 1ssues 1n galaxy evolution:
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e Avoidance of over-production of
massive galaxies

e “Old, red and dead” appearance
~ of massive ellipticals
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Schematic: “standard” AGN activity

“Standard” AGN have:

e Luminous accretion disk
- optically thick
- geometrically thin
- associated X-ray corona

e Bright line emission
- UV ionising radiation from disk

¢ Dusty obscuring structure
- emits in IR/sub-mm

¢ Orientation-dependent observed
properties
Neeaton ¢ - Type 1 vs Type 2 AGN

e Sometimes, extended radio jets




Accretion at low Eddington fractions

e Accretion flow modelling (e.g.
Narayan & Y1 1994,5) indicates
standard thin disks are unstable at
low Eddington fractions

- Leda= (4 © G c mp/ o1) MBH

e Instead, advection-dominated
(radiatively inefficient) accretion
flows occurs (ADAFs / RIAFs) 5 4 8 -2 -1 0 I

Log (nMc®/ L)
- geometrically thick, optically thin

e Most of the energy for ADAFS is Schematic of the switch between

redicted to come out in kinetic kinetic AGN output for accretion
: rates at low fractions of Eddington,

form, as radio jets and radiative output at high fractions
(Merloni & Heinz 2008)
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Quasar minimum Eddington rates

42 43 44 45 | 15 16 e
log(ALzpo0a) [€rg/s) Log Ly, = Log [9xAL,(51008)] (erg s

Minimum L/Lg4q values of ~0.01 are indeed seen in deep surveys
of QSOs (radiative-mode AGN)

- PRIMUS (Trump et al 2009); zCOSMOS (Kollmeier et al 2006)



[Low-excitation radio-AGN




Eddington rates of radio AGN

o 7 Hobgtton Best & Heckman } _ Wu et 'al 2611 |
e (2012):
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Schematics of AGN activity

Radiative—-mode AGN
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Radio Loud

> <

Radio Quiet

L/ 5001 L/ 2001
< > < =
Jet mode Radiative mode

Low—-excitation radio source

* Very massive early—type galaxy
* Very massive black hole

* Old stellar population; little SF
* Moderate radio luminosity

* FR1 or FR2 radio morphology

* Weak (or absent) narrow, low
ionisation emission lines

AGN LINER

* Massive early—type galaxy

* Massive black hole

* Old stellar population; little SF
* Weak, small-scale radio jets

* Moderate strength, low—ionisation
narrow emission lines

High—excitation radio source Radio-loud QSO

Host galaxy properties like high—
excitation radio source, but with
addition of:

* Massive early—type galaxy
* Massive black hole

* Old stellar population with some

on—going star formation * Direct AGN light

* High radio luminosity * Broad permitted emission lines

* Mostly FR2 morphology * Sometimes, beamed radio emission

Type 2 QSO / Seyfert 2 I Radio Quiet QSO / Seyfert 1

* Moderately massive early—type disk ' Host galaxy properties like Type—2
galaxy with pseudo—bulge ! QSO and Seyfert 2, respectively, but

* Moderate mass black hole with addition of:

* Direct AGN light

* Broad permitted emission lines

1
1
* Significant central star—formation
* Weak or no radio jets :

* Strong high—ionisation narrow lines ! Bias towards face—on orientation

* QSOs more luminous than Seyferts |

Light dominated by host galaxy

> <
Direct AGN light




Local galaxies and their AGN

e Look at the demographics of galaxies in local Universe

e AGN selected from SDSS by emission lines or radio emission
- Radiative-mode AGN: responsible for quenching process?
- Jet-mode AGN: responsible for maintaining quenched state?

Bl Al galaxies

AGN: L, /L., >0.01

Star-forming
main sequence
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Star-formation AGN connection

For radiative-mode, AGN activity tightly connected with SF.
e Depends on star-formation rate near galaxy nucleus
e Larger-scale star-formation 1s necessary but not sufficient

e Implies need for cold dense gas supply to nuclear regions

Left: correlation of SDSS
fibre star-formation vs

AGN accretion rate
(Kauffmann et al 2007).

Right: tighter correlation
when measured on 300pc
scales (Diamond-Stanic
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Merger triggering of AGN?

e Many studies show that the
prevalence of radiative-mode
AGN 1s enhanced 1n galaxies

undergoing mergers / interactions. % §
- However, so 1s star-formation 10 2
- SDSS allows these two effects to :}fi S
be separated | e E
e Correlation of AGN activity with 1.0, | igﬁg =
2 _ -2.
mergers 1s a secondary effect of 08 b
¥ : 0.00 0.05 010 015 0.20 0.25 0.30
underlying correlations between A
mergers and SF, and SF and AGN  AGN luminosity on the D(4000) vs
- at least, for “typical” radiative- galaxy lopsidedness (A1) plane (from
mode AGN Reichard et al. 2009). The horizontal

nature of the contours indicates no
independent dependence on mergers



Environmental effects?

Density

e Likewise AGN fraction depends
on large-scale environment.
- But 1f you account for the effects of

mass and central SFR, these also go
away (Sabater et al. 2015).

e Radiative-mode AGN need a cold
dense gas supply, but it doesn’t
matter where this comes from.
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Secular fuelling of radiative-AGN

e Slow but significant gas inflow
can be driven by internally-driven
non-axisymmetric perturbations

- bars, over distortions, spiral arms

e Such disturbances also lead to

creation of pseudo-bulge L

- dynamically cold bulge with star- Up: comparison of classical bulges vs
formation pseudo-bulges (Kormendy & Ho 2013)

- typically found below Down: HST 1mages of typical Seyferts,

showing non-axisymmetric distortions

GNI SOkm/S, MNI OIO'SMsun
e Exactly the type of galaxy
in which ‘typical’
radiative-mode AGN
activity is seen.
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Eddington ratio distributions

Consider Eddington ratios of emission-line AGN split by D(4000)

e Star-forming galaxies show distribution peaked at a few percent
of Eddington, largely independent of black hole mass

- if there 1s sufficient gas supply, black hole self-regulates its growth?
e Quenched galaxies show a power-law distrib., scaling with Mgn

D(4000) < 1.4
+-10°"° < Mg, <107
¢ 10" < Mg, < 10"%
* 10"% < Mg, <107
— 107.50 < MBH < 107]5
+-1077° < Mg, < 10%%
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, e AN Eddington rate distributions of
' bungs17 BN t g emission-line AGN, split into
—o— 10" < Mg, < 10™* R IR AW . 5
o 1070 < Moy < 107 * e star-forming and passive host
e 10°° <My, <10%° T 5
| galaxies. Adapted from

-?ogw(lLb;./L;) Kauffmann & Heckman (2009).



Fuelling of powerful jet-mode AGN

e Hot gas 1s the most viable fuelling
source for powerful radio sources
- found 1n massive galaxies
- often in groups and clusters
- have X-ray emitting hot gas haloes

X-ray with radio contours ’ Perseus
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Fuelling of powerful jet-mode AGN

e Hot gas is the most viable fuelling
source for powerful radio sources
- found in massive galaxies
- often in groups and clusters
- have X-ray emitting hot gas haloes

X-ray wi

e Bondi accretion?
= dMBondi/dt = 4 7T }L (G 1\/IBH)2 p / Cs3
- insufficient to explain energetics

e Gas 1s cooling: hydro simulations
(Ge sar1‘et‘ a12013_ ,su _gest cold

T
R iaa. o

1 arcmin ~ 21.4 kpc,
1



Jet-mode AGN feedback

Conditions just right for an AGN feedback cycle:
e AGN fuelled from cooling hot gas
e AGN jets deposit the energy back into the same hot gas

Radio source distributes energy around whole environment by
dissipative sound/shock waves driven by expanding radio bubbles

- cf. Perseus cluster studies of Fabian et al (2003,2005.2006)




Jet-mode AGN energetics

Can estimate mechanical energy of radio jet from inflated cavities.

Cooling flow clusters:

- almost all contain active radio source
- instantaneous mechanical jet powers match X-ray cooling rates

Galaxy scales:

- instantaneous heating exceeds cooling, but most gals “switched off”.

- time-averaged rate from recurrent activity (over-)balances cooling

10°

10*

MS 0735.6+7421

(Rafferty et

_ 10tal 2006)
§ 10f
= 10'F o

Cluster scales:

Licm(< Feoot) (102 erg s™)

AAAL PETTTY TR WY PRPETTTTT B
102 100 10° 10 100 10°

44_ Galaxy scales:

- (Best et al 2006)
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Log(LB / LB,snIar)



A radio-AGN feedback cycle

Hot gas emits in X-rays and cools.

(faster in more massive systems)

Radio-AGN act as a

No more fuel for ICSSUER LR (Cooling rate increases;
black hole, so radio- controlling the some gas falls onto the
AGN is switched off |[EECSISLUEINELERE central black hole

gas. Maintains host

galaxy as “old, red
and dead”

Hot X-ray gas 1s Radio-AGN switched

heated by AGN;

on. Jets deposit energy
into surrounding gas

gas cooling stops



Feedback from radiative-mode AGN?

e Radiative mode AGN are found in star-forming galaxies, and
star-formation can drive galactic-scale outflows

e Massive stars return ~10%* J in kinetic energy per Mgun of SF
- equivalent to characteristic velocity of 1200 km/s
- far larger than escape velocity

Great Observatories image of the
star-forming galaxy M82 showing
e o R R PR T P S R

Q % N ORi e




AGN-driven feedback?

e AGN-driven outflows are common 1n radiative-mode AGN
- 100’s or 1000’s km/s blueshifted emission lines in UV, optical, Xray

e [Large-scale outflows convincingly seen in some extreme QSOs

e But in typical AGN, gas masses & outflow sizes unconstrained
- outflows not seen in Seyfert 2s: sizes < 10s pc? low mass at large r?
- no evidence that ‘typical’ AGN show black-hole-driven feedback

Flux ‘. j i;;; Velocity
I~ |

+

Gemini IFI obs. of [OIII] line in powerful QSO J0319-0019 (Liu et al. 2013)



So what does quench galaxies?

Two critical timescales for gas infall onto galaxies:
e Dynamical timescale (tayn) [time taken to fall in]
e Cooling timescale (tcoor) [time taken to radiate away energy]

Low mass galaxies, tcool < tdyn

- gas reaches galaxy in cold form, settles in to disk, forms stars
High mass galaxies, tcool > tdyn

- gas heated to virial temperature and forms a hot (X-ray) halo.

- immediate star-formation suppressed: quenching
- gas would radiate & cool gradually, but jet-mode AGN keep it hot

Switch corresponds roughly to transition mass between low-mass
star-forming population and high-mass quenched population

e Mass-dependent ‘accretion-mode quenching’ only: not AGN
- but merger/quasar events may be important for massive ellipticals



Cosmic evolution of AGN

¢ AGN luminosity functions indicate “down-sizing” of AGN

log Ly = 43-44
X log Ly = 44-45
og 1 45-47

Left: the cosmic evolution of optically-selected
AGN of different luminosities (Croom et al. 2009)
Up: the evolution of X-ray selected AGN of
different luminosity (Ueda et al. 2014)




SF-AGN connection at high-z

e Radiative mode AGN typically more luminous at high redshift
e Typical star-formation rates of galaxies similarly increase with z

e At all redshifts, AGN host galaxies have specific SFRs which
are typical for star-forming galaxies at that redshift.

- Consistent with the contemporary Universe picture, with AGN
evolution, like SF, being driven by an increase in gas availability
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SFGs; Karim et al. (2011)
® Type 2 AGN; Mainieri et al. (2011)
® Type 2 AGN (L/Lgy > 0.01) in SDSS
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Cosmic evolution of black hole growth

e Can integrate quasar luminosity
functions to measure cosmic
history of black hole growth, as
measured by AGN activity.

- Peaks at z~2 and falls to high-z

- Reminiscent of behaviour of
cosmic star formation...
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From Hopkins et al. (2007)



Cosmic evolution of black hole growth

e Can integrate quasar luminosity
functions to measure cosmic
o sl history of black hole growth, as

—.—.-dpss/dt+8.0e—4 [Fardal et al.]

Sttt o o) measured by AGN activity.

- Peaks at z~2 and falls to high-z

- Reminiscent of behaviour of
cosmic star formation...

- solid black line: cosmic history of
black hole growth, as measured by
AGN activity

- dashed line (shaded region gives

From Shankar et al. (2009) uncertainty): cosmic history of star

formation, scaled down by ~10°
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e SF-AGN connection seen across
cosmic time



Evolving MgH - MBulge relation?

e Using broad-line AGN (quasars)
we can estimate black hole
masses at high redshifts

- indications that Ma/Mbpulge
increases with increasing z

From McLure et al. (2006)



Evolving MgH - MBulge relation?

e Using broad-line AGN (quasars)
we can estimate black hole
masses at high redshifts

- indications that Ma/Mbpulge
increases with increasing z

wl e But....

TPero0s 3 Schrammiis - selection of most luminous

® Jahnke+09 @ Merloni+10 _

t Bomnert+10 & Targett+12 quasars automatically selects the
] D_ecar|i+10 ] Rie.chAers+08 5

S S 08 & Wanga10" most massive black holes!

- representative of full population,

or just top end of a scatter?
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Compilation from Schulze &
Wisotzki (2014)



Evolving MgH - MBulge relation?

e Using broad-line AGN (quasars)
we can estimate black hole
masses at high redshifts

- indications that Ma/Mbpulge
increases with increasing z

LIS B R s

- selection of most luminous
quasars automatically selects the
most massive black holes!

- representative of full population,
or just top end of a scatter?

From Schulze & Wisotzki (2014) e Attempts to model selection
effects suggest any underlying
evolution 1s much less strong.

2o
o0
o

L |
g
o r—{
-
%

&
o




Cosmic evolution of jet-mode AGN

e Mass dependence of radio-AGN activity 1s same out to z~1,
consistent with hosting by same massive passive galaxies in
same AGN feedback
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Tasse et al. 2008
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Cosmic evolution of jet-mode AGN

e Radio luminosity function also shows “down-sizing”.
- But evolution of just “jet-mode” AGN needs source classification

e Best et al (2014): first measure of evolution of jet-mode AGN
- increase to z~0.5, then begins to fall
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Left: cosmic down-sizing in the radio-AGN population (Rigby et al 2015)
Right: cosmic evolution of jet-mode AGN to z~1 (Best et al. 2014).



Cosmic evolution of jet-mode AGN

e Compare to evolution of massive quiescent
galaxies (potential hosts):
- declining availability of massive hot haloes
- broad consistency with local Universe

- but extra complications: luminosity evolution,
triggering time delay, or contribution of
dying cold-gas fuelled sources

Model 2: luminosity & density evolution

— — Model 2b, 2=1.5

Jet-mode, z=0

Number density / Mpc™ log,,(L)"

Model 2a, 2=0.6,2=0.85
1 = = Model 2b, 2=0.6,2=0.85

-
Q
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Model 2c, z=0.6,2=0.85

Left: cosmic
evolution of
potential jet-
ety ot @012 mode AGN hosts
Y ey Right: modelling

¥ Muzzin et al (2013)

4 Dominguez Sanchez et al (2013) h AN O f J eT ik mO d e A GN 1070 = = Modeldh, 20622085

Model 3c, 2=0.6,2=0.85

Redshift evolution 23 24 25 26

I°g10(L1.4 GHz / w Hz-‘)

— — Model 3a, z=1.5
Jet-mode, 2=0

Model 3a, z=0.6,2=0.85
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Summary

e Radiative mode AGN

- Eddington scaled accretion rates above ~1%

- typically in moderate mass galaxies (~10'9> Mgyn)

- AGN activity correlated with central star formation

- fuelled by cold dense gas, supplied through secular processes

- little evidence for AGN feedback except in extreme objects

- basically same in high redshifts (up-scaled due to high gas supply)

e Jet-mode AGN

- Eddington-scaled accretion rates below ~1%

- advection-dominated accretion flow; most energy output into jet

- hosts are massive, passive ellipticals with massive black holes

- fuelled by hot gas cooling from X-ray hot haloes

- AGN-feedback cycle, maintaining galaxies “old, red & dead”

- cosmic evolution traces massive passive gals, but with complications



