Cosmology using strong lensing

Towards a 1000-lens sample

Tom Bakx
Steve Eales
CARDIFF
UNIVERSITY
PRIFYSGOL
CAFRDYD

: bakxtj@cardiff.ac.uk

Cosmology

A 1000-lens sample offers better cosmological detail than the Planck mission.

Lens and lensed galaxies' mass and distance provide cosmological information.

Currently, the largest high-redshift lens samples consist of **26 sources**.

Lens finding

Current lens finding strategies aim at galaxies with a $S_{500\mu m} > 100$ mJy and z > 2.

Studies suggest **1.5 to 2 lenses** per square degree, making the *H*-ATLAS survey a perfect **precursor** for a lens survey.

It detected 300,000 galaxies

over 550 sqr. deg. with Herschel's PACS and SPIRE. 100 µm 250 µm 160 µm 350 µm 500 µm

Observation

The *H*-ATLAS survey might suffer from **source confusion** at long wavelengths and poor **redshift** estimates.

To verify the **potential** of *H*-ATLAS, we observed ~220 possible lenses at **850 µm** with **SCUBA-2** on the James Clerck Maxwell Telescope (**JCMT**).

Source confusion can be studied because of JCMT's smaller beam size:

Herschel			1	JCMT
λ [μm]	250	350	500	850
Angular size	18"	25"	36"	14"
Surface	158%	306%	634%	100%
Beam size				0

Results

We have observed 215 galaxies, where 13% are contaminants, and **87%** are potential lenses.

Future work

We will determine **lensing probabilities** by comparing lensed and unlensed

luminosity functions,

galaxies in **optical** and **near-infrared** VIKINGS and KIDS surveys.